Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality.
نویسندگان
چکیده
The main function of vacuolar H(+)-ATPases in eukaryotic cells is to generate proton and electrochemical gradients across the membranes of the vacuolar system. The enzyme is composed of a catalytic sector with five subunits (A-E) and a membrane sector containing at least two subunits (a and c). We disrupted two genes of this enzyme, in yeast cells, one encoding a subunit of the membrane sector (subunit c) and another encoding a subunit of the catalytic sector (subunit B). The resulting mutants did not grow in medium with a pH value higher than 6.5 and grew well only within a narrow pH range around 5.5. Transformation of the mutants with plasmids containing the corresponding genes repaired the mutations. Thus failure to lower the pH in the vacuolar system of yeast, and probably other eukaryotic cells, is lethal and the mutants may survive only if a low external pH allows for this acidification by fluid-phase endocytosis.
منابع مشابه
Involvement of MoVMA11, a Putative Vacuolar ATPase c’ Subunit, in Vacuolar Acidification and Infection-Related Morphogenesis of Magnaporthe oryzae
Many functions of vacuole depend on the activity of vacuolar ATPase which is essential to maintain an acidic lumen and create the driving forces for massive fluxes of ions and metabolites through vacuolar membrane. In filamentous fungus Magnaportheoryzae, subcellular colocalization and quinacrine staining suggested that the V1V0 domains of V-ATPase were fully assembled and the vacuoles were kep...
متن کاملComposition and assembly of the yeast vacuolar H(+)-ATPase complex.
The proton-translocating ATPase (H(+)-ATPase) found on the membrane of the yeast vacuole is the best characterized member of the V-type ATPase family. Biochemical and genetic screens have led to the identification of 14 genes, the majority designated VMA (for vacuolar membrane ATPase) encoding subunits of the enzyme complex. At least eight genes encode for proteins comprising the peripherally a...
متن کاملProtein sorting in yeast: the role of the vacuolar proton-translocating ATPase.
We are investigating the physiological roles of organelle acidification in yeast by two different approaches. First, we have identified two mutants which are defective in acidification of the yeast lysosome-like vacuole from among a collection of mutants which mis-sort soluble vacuolar proteins to the cell surface. These mutants have been helpful in identifying other cellular functions linked t...
متن کاملThe yeast vacuolar proton-translocating ATPase contains a subunit homologous to the Manduca sexta and bovine e subunits that is essential for function.
The yeast cwh36Delta mutant was identified in a screen for yeast mutants exhibiting a Vma(-) phenotype suggestive of loss of vacuolar proton-translocating ATPase (V-ATPase) activity. The mutation disrupts two genes, CWH36 and a recently identified open reading frame on the opposite strand, YCL005W-A. We demonstrate that disruption of YCL005W-A is entirely responsible for the Vma(-) growth pheno...
متن کاملAcidification of the lysosome-like vacuole and the vacuolar H+-ATPase are deficient in two yeast mutants that fail to sort vacuolar proteins
Organelle acidification plays a demonstrable role in intracellular protein processing, transport, and sorting in animal cells. We investigated the relationship between acidification and protein sorting in yeast by treating yeast cells with ammonium chloride and found that this lysosomotropic agent caused the mislocalization of a substantial fraction of the newly synthesized vacuolar (lysosomal)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 87 9 شماره
صفحات -
تاریخ انتشار 1990